Annual Drinking Water Quality Report Woodland Hills City -2016

We're pleased to present to you this year's Annual Drinking Water Quality Report. This report is designed to inform you about the quality of the water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water comes from the Maple Canyon Well that provides groundwater.

The Drinking Water Source Protection Plan for Woodland Hills is available for your review. It contains information about source protection zones, potential contamination sources and management strategies to protect our drinking water. Our sources have a low susceptibility to potential contamination. We have also developed management strategies to further protect our sources from contamination. Please contact us if you have questions or concerns about our source protection plan.

There are many connections to our water distribution system. When connections are properly installed and maintained, the concerns are very minimal. However, unapproved and improper piping changes or connections can adversely affect not only the availability, but also the quality, of the water. A cross connection may let polluted water or even chemicals mingle into the water supply system when not properly protected. This not only compromises the water quality but can also affect your health. So, what can we do? Do not make or allow improper connections at your homes. Even that unprotected garden hose lying in the puddle next to the driveway is a cross connection. The unprotected lawn sprinkler system after you have fertilized or sprayed is also a cross connection. When the cross connection is allowed to exist at your home it will affect you and your family first. If you'd like to learn more about helping to protect the quality of our water, call us for further information about ways you can help.

This report shows our water quality and what it means to you our customer.

If you have any questions about this report or concerning your water utility, please contact Corbett Stephens, 801-857-0788. We want our valued customers to be informed about their water utility. If you want to learn more, please contact system management.

Woodland Hills City routinely monitors for constituents in our drinking water in accordance with the Federal and Utah State laws. The following table shows the results of our monitoring for the period of January 1st to December 31st, 2016. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily pose a health risk.

In the following table, you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter (ug/l) - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Nephelometric Turbidity Unit (NTU) - nephelometric turbidity unit is a measure of the clarity of water. Turbidity, more than 5 NTU, is just noticeable to the average person.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

TEST RESULTS									
Contaminant	Violatio n Y/N	Level Detected ND/Low- High	Unit Measurement	MCLG	MCL	Date Sampled	Likely Source of Contamination		
Microbiological									
Contaminants									
Total Coliform Bacteria	N	ND	N/A	0	Presence of coliform bacteria in 5% of monthly samples	2016	Naturally present in the environment		
Fecal coliform and E.coli	N	ND	N/A	0	If a routine sample and repeat sample are total coliform positive, and one is also fecal coliform or <i>E. coli</i> positive	2016	Human and animal fecal waste		
Inorganic Contai	ninant	S							
Barium	N	69	ppb	2000	2000	2016	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits		
Copper a. 90% results b. # of sites that exceed the AL	N	a. 118 b. 0	ppb	1300	AL=1300	2016	Corrosion of household plumbing systems; erosion of natural deposits		
Lead a. 90% results b. # of sites that exceed the AL	N	a. ND-2 b.0	ppb	15	AL=15	2016	Corrosion of household plumbing systems, erosion of natural deposits		
Nitrate (as Nitrogen)	N	ND-1	ppb	10	10	2016	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits		
Selenium	N	10	ppb	50	50	2016	Discharge from petroleum and metal refineries; crosion of natural deposits; discharge from mines		
Sodium	N	5	ppm	500	None set by EPA	2016	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills.		

Sulfate	N	19	ppm	1000	1000	2016	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills, runoff from cropland
TDS (Total Dissolved solids)	N	254	ppm	2000	2000	2016	Erosion of natural deposits

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Ruby's Inn is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

We at Woodland Hills do our best to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.